
Indian Institute of Technology
Hyderabad

Clustering Algorithms for Jet Reconstruction in HEP

Abhishek Agarwal
EP17BTECH11001

Under the guidance of Professor Priyotosh Bandhyopadhyay

July 2020

Clustering Algorithms for Jet Reconstruction in HEP

Abhishek Agarwal
ep17btech11001@iith.ac.ina,b

aDepartment of Physics, Indian Institute of Technology
bKandi, Sangareddy, Telangana, India

Abstract: Hadronic collisions are extremely hard to analyse since they result in jet
formation and smear out the final state at LHC like colliders in various ways. For a
very long time now, reconstruction of these hadronic jets and their distributions
have been vital to uncover the physics of these processes. Here we compare the jet
reconstruction results from today’s standard and well accepted algorithm to a new
algorithm, QuickShift++ (also referred to as QuickShift throughout this report), a
graph based clustering method.

1. Introduction

Today’s High Energy Particle Physics is driven by simulations and Monte Carlo Event generators. There are a
few alternatives which are widely used to simulate and observe the physics of Standard Model and Beyond it
as well. In any QCD event generation, quarks from stable hadrons are made to interact with one another at
very high energies. The resulting state of particles interacts in complicated ways and forms showers of hadronic
particles. These showers are arranged in particular structures or clusters that we call jets. Jets are very vaguely
defined so far in the literature, however they give us access to some important observable quantities which
characterises the physical process that took place in the collision.

Figure 1: A schematic of a Hard QCD process taken from [1]

1.1. The Standard Model[2]
The Standard Model is the accepted frontier of our understanding of the universe. It is a very successful

theory describing the relation and existence of three out of the four fundamental forces of nature. It aims to
identify the most elementary particles of the universe and understand how they interact with one another. The
Higgs Boson[3] is the latest addition to this theory and explains why and how massive particles are massive.
The stunning success of the Standard Model has convinced us that it is not only an important path towards a
Grand Unified Theory, but it that it is the correct one.

1.1.1. Elementary Particles
The Standard Model elucidates two kinds of particles that exist at an elementary scale. One are fermions,

carrying half integer spin and the other are bosons, carrying a full integer spin. With the Spin Statistics The-
orem, it has been shown that two identical fermions cannot be put into the same space together, they repel
by nature. However bosons can be put. This is the primary difference in the behaviour of these particles.
Fermions take up space, and are like the bricks of the universe. The bosons do not take up such space and more
appropriately are said to govern the interactions between all the particles.

There are four forces in nature, gravitational force, electromagnetic force, the strong nuclear force and weak
nuclear force. The Standard Model describes and combines electromagnetic force and weak nuclear force into
a single Electro-Weak Force which is mediated by the γ photon, W+/W− Bosons, and a Z Boson. It also
describes two quarks that comes in three generations which become more massive as we move down the gener-
ations. This gives us six quarks. The heaviest of the quarks is a Top Quark. Due to it’s special place in the
standard model[4], the Top Quark physics provides us insight into physics beyond the Standard Model.

1.1.2. A brief on Detector Phenomenology
In a detector, two particles to be collided are sent at desired energies along the Z axis. The XY plane

becomes what is called the transverse plane, and instead of measuring the x and y positions and momenta of
the particles we measure the η (pseudorapidity) and φ (azimuthal angle), which are all related by the equations:

px = ptcosφ

py = ptsinφ

pz = ptsinhη

Where pt is the transverse momenta of a particle. These, along with the mass of the particle are related by the
relativistic equation E2 = |~p|2 +m2 in the natural units. Energy of particles is measured by layers upon layers
of calorimeters, allowing us to estimate the particles total four momenta. In addition to this, very powerful
magnetic field curve charges particles allowing us to measure their charge. All of this information is collected
for every collision happening at a particle collider and is called an event.

Added to this, heavy and highly energetic particles undergo radiation emission, maybe giving off photons.
Quarks undergo hadronization in which heavy and energetic quarks radiate gluons and lighter hadrons. This
means that instead of seeing one hadron, we see a bunch of hadrons huddled together in places where we expect
a hard quark to land. This bunch of particles forms a shower like canopy and is called a jet. We can most
often look at event data and identify these jets. Due to conservation of momentum, the total four momentum
of all of the constituents of the jet tells us the four momentum of the initial hard quark correctly. In order to
separate these jets in the event from the rest of the event data, we use jet clustering algorithms.

1.2. The Top Quark
The Top quark is very heavy and a very large amount of energy is required to create top quarks in pair. It

has spin equal to 1
2 and electric charge of + 3

2 . Due to it’s charge it interacts with the Photon. Being a quark,
it can carry color charge and takes part in Strong Nuclear Interaction by mediating gluons. It also changes
flavour to a significantly less massive bottom quark while producing a W+ Boson. This is the primary mode of
decay of the top quark.

As can be seen in Figure 2, the Top quark shows up as three distinct high energy jets. The harder the
top quark, the closer will the three sub-jets be. The standard model predicts top decay as t → W+ b with a
branching ratio of 99.8%. The W boson further decays either into two leptons, in which case the the entire top
quark decays into only one jet without a substructure. The W can also decay into two lighter quarks, in which
case the typical three prong jet structure is seen in the data.

2. Jet Clustering in FastJet

The FastJet algorithm, written by Matteo Cacciari, Gavin Salam and Gregory Soyez [5] marked a very
important point in Simulation for Physics because it delivered a truly real time and reliable algorithm to
construct jets in simulation as well as experimental events. Before them jet clustering was known to be either

2

fast and unreliable, or slow but robust. Their pioneering work in 2006 changed the landscape by demonstrating
that Jet clustering could be fast[6].

FastJet comes in built with three jet clustering algorithms. All of them are the same in spirit, with very
subtle differences in the metric they use. The metric here is a function of position of two partons which can be
used to calculate a distance between them. Formally a metric is:

g : O1 ×O2 → R (1)

where Oi is the set of all observable properties of the i’th parton. Using this metric function, we can measure
which particles are “closer” and attach a physical context to this “closeness”.

The basic algorithm is outlined here. The inputs to this algorithm are a list of particles in the four-momenta
vector space, and an additional jet size parameter R. The first step is to sort the particles in order of pT ,
call this set P . We also define a placeholder particle called beam particle to simplify our notation, bi : pT =
pT (pi) & η, φ s.t. ((η(pi)− η(bi))2 + (φ(pi)− φ(bi))2) = 1 where pi ∈ P . Then we iterate until no particles are
left:

• Define set D = {g(pi, pj) : pi, pj ∈ P ; i 6= j} ∪ {g(pi, bi) : pi ∈ P } and take d = min(D).

• If d = g(pi, pj) : pi, pj ∈ P and i 6= j, recombine pi & pj into a particle and reinsert into P .

• If d = pT (pi)2 : pi ∈ P , remove pi from P as a jet Jt.

At the end P is left empty and we have a set of jets {J1, J2...}

2.1. Kt Clustering
Kt clustering uses the metric:

g(1, 2) = min(pT (1)2, pT (2)2)((η(1)− η(2))2 + (φ(1)− φ(2))2) (2)

2.2. anti-Kt Clustering[7]
Anti-Kt clustering uses the metric:

g(1, 2) = min(pT (1)−2, pT (2)−2)((η(1)− η(2))2 + (φ(1)− φ(2))2) (3)

2.3. Cambridge/Aachen Clustering
Cambridge/Aachen Clustering uses the metric:

g(1, 2) = (η(1)− η(2))2 + (φ(1)− φ(2))2 (4)

3. Jet Clustering with newer algorithms

Here we present various alternative clustering algorithms. In this section, each algorithm attempts to assign a
list of data points spanning some space with a metric.

3.1. K Means Clustering
K Means clustering is perhaps the oldest clustering algorithm discussed here. It is reasonably fast and

reliable. It’s drawback is that it requires the number of clusters to be known beforehand. This means that in
eta× φ space, it needs to know the number of jets before starting.

It starts by assuming that the clusters are randomly spread out. Then it iteratively assigns each data point
to the nearest cluster, and the cluster point is shifted to the mean position of the cluster. The iteration stops
when there no cluster point has moved since the last iteration.

3

3.2. Mean Shift Clustering
Mean Shift Clustering is a more complicated and slower version of K Means Clustering. It has been around

since at least 1995 when it’s application to find modes and clusters in given data were discussed [8]. Since then
a lot of research has gone into it but it was deemed to be too slow. Finally in 2018 a hybrid variant of Mean
Shift called QuickShift was demonstrated to be fast and reliable [9].

It starts by spreading evenly spreading many jet centres across the space. Then iteratively all jet centres
are shifted to the mean position of data points their neighbourhood, combining two centres if they get too close.
The iteration ends when no jet centre has moved since the last iteration.

3.3. QuickShift++
The QuickShift++ is an optimised Mean Shift algorithm, which instead of starting with uniformly spaced

out jet centres, estimates cluster location using a graph partition algorithm. In 2018 it was demonstrated that
using these starting locations, the algorithm performs faster and better clustering. [9]

4. QuickShift++ Algorithm

The fist part of the algorithm is just to estimate the cluster cores using a special and fast density approx-
imation to the actual density of data points. The exact and entire algorithm has been formally defined and
analysed[9]. It begins with defined the inputs as a set X[n] := {x1, ..., xn} having n elements scattered in Rd

on whom a distance can be defined which is at least as good as a Lebesgue measure (A Lebesgue measure of a
set is the minimum of sum of all intervals whose union covers the set). This imposes a minimum ordering on
the input data. We then need to find the points of highest density in X. To do this we use a special density
estimator function:

fk(x) : = k

n× vd × rk(x)d
where

vd = V olume of a unit ball in Rd

rk(x) : = Distance of x from its k′th nearest neighbour

We define cluster cores using the fk(x) as a density function, every significant the local maxima of fk(x) is a
cluster core. The significance of a cluster core here is characterised by another parameter β. M ⊂ X is a cluster
core if it is a connected component of:

{x ∈ X : fk(x) ≥ (1− β)max({fk(x′) ∀ x′ ∈M})} (5)

That is M is a cluster core in X if it is itself as ordered as X, and the density (fk(x)) at all points in M is
more than or equal to some fraction (1 − β) of the highest density of all points in it. To assist the process of
estimating cluster cores in X, we also define an undirected graph G(λ) with vertices {x ∈ X : fk(x) ≥ λ} and
edges between two points x, x′ if and only if g(x, x′) ≤ min(rk(x), rk(x′). We then sort X in order of fk(x) and
start with an empty set of cluster cores M . Then:

• For each xi ∈ Xsorted, let A be the cluster core that xi belongs to in G(λ = (1− β)(fk(xi)),

• If A is disjoint from every cluster core in M , add A to M .

At the end of this procedure we are left with M , a set of set of points which is our set of estimated cluster
cores in X. Then to cluster the remaining points we do a hill climbing step:

• For each point x not already in any cluster, make a path x → x′ where x′ is defined by g(x, x′) =
min(g(x, xi) ∀ xi ∈ X) and fk(x′) > fx(x)

This makes a path of increasing density form all points not already in a cluster to a point that lies in some
cluster. Thus all the points in QuickShift++ are assigned some cluster.

4

(a) FastJet anti-kt at R = 0.5 (b) QuickShift++ with k, β = 17, 0.75

Figure 2: A comparison of FastJet and QuickShift++ Algorithms in a pp → tt̄; Ecm = 14TeV , |η| ≤ 2.5, ISR, FSR and
Hadronisaiton is on. MPI is off. An initial parton cut of Ep > 1.5 GeV and JetpT > 20 GeV was used.

5. Comparison

FastJet takes a single R parameter. It roughly corresponds to the jet size. At higher energies, jets gets
more collimated and all the jet constituents are more recognizable at lower R values. The algorithm itself is
a simple nearest neighbour clustering with a the metrics discussed above. It runs in < 0.1 sec and has been
demonstrated to have a time complexity O(NlogN). QuickShift on the other hand is a peak estimating algo-
rithm over a density space formed from the given metric. It runs in < 0.3 sec. It has been demonstrated to
have a time complexity of O(kNα(n)) where α is the Inverse Ackermann function[10]. This time complexity
might look like it is faster than FastJet, however given the order of particles in any reasonable jet, k is usually
near 20 meaning QuickShift will actually run a little bit slower than FastJet.

The k parameter roughly corresponds to the number of constituents and β corresponds to the densities of
particles to be classified as different jets. The QuickShift implementation uses the standard Euclidean Metric
over η × φ which is the same as Cambridge/Aachen Metric, but with a key difference. The C/A algorithm
knows that φ is circular and posses an extra symmetry given by f(x+ 2π) = f(x), which however is not built
into the QuickShift metric.

Another important difference in these algorithms is the fact that FastJet uses all four components of the four
momenta to discern useful information in order to perform robust jet reconstruction. However the QuickShift
algorithm only performs clustering in η×φ space and does not know about the energy and invariant mass of the
particles. Despite having less information about the final state of the event and not knowing that φ is circular,
QuickShift is able to resolve the fat Top Jets into three different sub-jets at 14 TeV . In order of their energy,
the sub-jets physically correspond to a b jet that is the direct child of the top quark, and two lighter jets coming
from the decay of the W boson which is also a direct child of the top quark[11].

To do a more direct analysis of jet counting by both the algorithms I simulated N = 10, 000 pp → tt̄ events
at Ecm = 14 TeV in PYTHIA[12] version 8.24 built with FastJet 3.3.3 version. I also set up the forced decay
modes such that the BranchRatio(t → bW) = 1.0 and BranchRatio(W → 2 leptons) = 0.0. This way we
ensure that the system always contains 2 hard and 4 light jets. η and φ are rounded off to one decimal place
in order to emulate detector level least counts. FastJet at R = 0.5 recorded only 23, 758 out of 60, 000 jets
while QuickShift++ recorded at least 24, 816 jets in events with less than or equal to 6 jets. Due to using an
unphysical metric, QuickShift also reports 4, 686 jets lie in events with more than 6 jets. It is to be noted here
that both the algorithms had a jetpT > 20 GeV cut as well.

5

Figure 3: A comparison of FastJet and QuickShift++ Algorithms in terms of jet masses. The orange histogram shows the
arithmetic sum of mass of first two jets in order of pT found by FastJet R = 0.5. The mass cutoff at 350GeV is unmistakable.
The blue histogram is the arithmetic sum of masses of the two ahrdest jets found by QuickShift. The peaks at m = 170, 250, 345GeV
are quite clear. They correspond to a single top quark, one top quark with a W Boson and finally two top quarks. The unusually
high spread of the blue curve is due to the following reasons. Data is smeared out by loss precision due to porting event data from
C++ code into python code. It is also smeared by the loss of energy as the subject are very often clustered as separate jets by
QuickShift.

6. IR Safety

The question of determining whether a jet clustering algorithm is IR Safe or not has been resolved[13]. To
test the IR safety of QuickShift clustering, we remove the cut Eparton >= 1.5 GeV and run it on the 10, 000
pp→ tt̄ events again. This time QuickShift reported 25, 127 jets in the events with less than or equal to 6 jets.
Again it also reports that 5, 453 jets come from events with more than 6 jets. Overall there is a 1.25% increase
in jets counted due to soft radiation. While this is not a conclusive proof neither is it a formal demonstration
of IR safety, however, it is a strong indication that the QuickShift algorithm if implemented in a way specific
to jet finding, would be demonstrably IR safe.

The proof of IR Safety relies on two factors, when testing the algorithm with and without soft particles:

1. All jets found in the event without soft particles will be found also in the event with the soft particles.
2. Any extra jets found in the event with soft particles will themselves be soft, i.e. they will not contain any of

the hard particles.

While the first property is not hard to show for QuickShift, the second property becomes a problem. Since
the density estimator fk(x) does not know how hard or soft a point really is, regions with a lot of soft particles
will have a higher density than regions with a few hard particles. To some extent this is offset by the fact that
any hard particles will in turn produce a large number of softer particles, in real physical events, harder particles
will naturally have a higher density of particles. In a real world implementation however we should be able to
use a custom density function with a pT or energy term which will help QuickShift separate soft particles from
hard particles.

7. Conclusion

FastJet with kt, anti-kt and C/A jet finding algorithms has been for a very long time been the standard of jet
finding in HEP. However it has been quite some time since then. The last decade has changed the scenario,
computation is more affordable than it ever has been and computer science has been making progress with

6

new clustering algorithms taking over. With the advent of more advanced algorithms and the progress in Data
Structures, it is incumbent that we use this knowledge and further our efficiency. Investigating newer methods
of jet clustering is a relatively cheap and effective way to boost the efficiency of state of the art event classifiers.
Pre built and generic implementations of QuickShift provide reasonably good jet finding results as has been
demonstrated above. Writing this algorithm to be commonly compatible, faster, more robust and tailoring it
to suit the specific needs of jet finding might result in an algorithm which can do better.

References

[1] G. P. Salam, M. Cacciari, Jet clustering in particle physics, via a dynamic nearest neighbour graph implemented with cgal.
URL http://www.lpthe.jussieu.fr/ salam/repository/docs/kt-cgta-v2.pdf

[2] S. F. Novaes, Standard model: An introduction (2000). arXiv:hep-ph/0001283.
[3] D. Anselmi, On the nature of the higgs boson, Modern Physics Letters A 34 (16) (2019) 1950123.

doi:10.1142/s0217732319501232.
URL http://dx.doi.org/10.1142/S0217732319501232

[4] G. Perez, Top quark theory and the new physics searches frontier, Phys. Scripta T 158 (2013) 014008. doi:10.1088/0031-
8949/2013/T158/014008.

[5] M. Cacciari, G. P. Salam, G. Soyez, Fastjet user manual, The European Physical Journal C 72 (3). doi:10.1140/epjc/s10052-
012-1896-2.
URL http://dx.doi.org/10.1140/epjc/s10052-012-1896-2

[6] M. Cacciari, G. P. Salam, Dispelling the n3 myth for the kt jet-finder, Physics Letters B 641 (1) (2006) 57–61.
doi:10.1016/j.physletb.2006.08.037.
URL http://dx.doi.org/10.1016/j.physletb.2006.08.037

[7] M. Cacciari, G. P. Salam, G. Soyez, The anti-ktjet clustering algorithm, Journal of High Energy Physics 2008 (04) (2008)
063–063. doi:10.1088/1126-6708/2008/04/063.
URL http://dx.doi.org/10.1088/1126-6708/2008/04/063

[8] Yizong Cheng, Mean shift, mode seeking, and clustering, IEEE Transactions on Pattern Analysis and Machine intelligence
17 (8) (1995) 790–799.

[9] H. Jiang, J. Jang, S. Kpotufe, Quickshift++: Provably good initializations for sample-based mean shift (2018).
arXiv:1805.07909.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to algorithms, MIT press, 2009.
[11] D. E. Kaplan, K. Rehermann, M. D. Schwartz, B. Tweedie, Top tagging: A method for identifying boosted hadronically

decaying top quarks, Physical Review Letters 101 (14). doi:10.1103/physrevlett.101.142001.
URL http://dx.doi.org/10.1103/PhysRevLett.101.142001

[12] T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C. O. Rasmussen, P. Z. Skands,
An introduction to pythia 8.2, Computer Physics Communications 191 (2015) 159–177. doi:10.1016/j.cpc.2015.01.024.
URL http://dx.doi.org/10.1016/j.cpc.2015.01.024

[13] G. P. Salam, G. Soyez, A practical seedless infrared-safe cone jet algorithm, Journal of High Energy Physics 2007 (05)
(2007) 086–086. doi:10.1088/1126-6708/2007/05/086.
URL http://dx.doi.org/10.1088/1126-6708/2007/05/086

7

