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Abstract: We look at solving the general damped oscillation differential equation
and then look at various techniques to solve damped oscillations in the presence of
an external force. Using this general solution to evaluate a few simple cases, results
are verified by numerical analysis.

1. Introduction

The general damped oscillations are described by the differential equation d2x
dt2 + 2γω0

dx
dt + ω2

0x = 0 where ω0
is called the natural frequency of the system and γ is called the damping ratio of the system[1]. This equation
has been historically solved and simplified into three cases[2]:

• γ < 1: The system oscillated with a frequency less than ω0 and the amplitude decreases to zero over time.
The oscillation frequency is given by ω1 = ω0

√
1− γ2

• γ = 1: The system returns to rest without any oscillation.

• γ > 1: The amplitude exponentially decays and overshoots, eventually coming to rest, but for larger
values of γ, the system takes more and more time to come to a stop.

2. General Case Solution for Oscillation under an external Force

Starting from a force equation we include another term F (t) to represent the external force. Here m is the
mass, k is a spring constant of oscillation, b is damping coefficient.
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Having put our equation in the desired form, we will now use the fact that ( d
2

dt2 + 2γω0
d
dt + ω2

0) is a linear
differential operator which can be factored into ( ddt − (−γω0 + ιω))( ddt − (−γω0 − ιω)) where ω = ω0

√
1− γ2.

We also define (−γω0 + ιω) = α and (−γω0 − ιω) = β. Our equation now becomes:

( d
dt
− α)( d

dt
− β)x = 1

m
F (t) (2)

We recall that x = x(t) and that ( ddt − δ)f(t) = eδt ddt (e
−δtf(t)). We will use this property twice, first δ → β

and then δ → α, to get the final integrable equation:

eαt
d

dt
(e−αteβt d

dt
(e−βtx)) = 1

m
F (t) (3)



(a) Damped Oscillator With and Without External Force (b) Numerical vs Analytical Solution
Figure 1: my caption

Equation (3) has been solved [3] to give a final solution:

x = e−γω0t

ω
(x0ωcos(ωt) + x0ω0γsin(ωt) + v0sin(ωt)) + 1

ω

∫ t

0
dt′e−γω0(t−t′)sin(ωt− ωt′)F (t′) (4)

where x0 is x(0) and v0 is |dxdt |t=0. Very interestingly, x(t1) is independent of the nature of F (t) s.t. t > t1. This
is the beauty of math, since the integral only sums the external force from 0 to t1, any force that lies in the
future, i.e. F (t) ∀ t > t1 will not affect the result now which is x(t1), whereas all the past forces do affect it.

3. Case Study

Let us study the result for an external force that is zero until a certain time, but is a constant after it.

F (t) =
{

0 if t < t1

F0 if t > t1

3.1. Analytical Solution
The analytical solution is given by:

x = e−γω0t

ω
(x0ωcos(ωt)+x0ω0γsin(ωt)+v0sin(ωt))+( F0

ωω2
0

)(ω−eγω0(t−t1)(γω0sin(ωt−ωt1)+ωcos(ωt−ωt1)))

(5)
To compare answers from a numerical solution, we solve equation (1) with a numerical solver and choose certain
values for the variables and initial conditions. (x0 = 1, v0 = 0, γ = 0.5, ω0 = 5.0, F0 = 5, t1 = 2.5).

3.2. Analysis
In the numerical solution, we have taken underdamped case (γ < 1) in order to see some oscillatory motion.

We can clearly see how before 2.5 seconds, the oscillator with non-zero force imitates the oscillator with zero
external force. However As soon as the external force starts acting, the resting position of the oscillator changes.
It is quite useful to see that under a constant force (t >> 2.5) the only difference between the two oscillators is
in the resting positions. This resting position turns out to be F0

ω2
0

as can be observed by substituting t→∞. For
our example, this is at exactly x = 0.2 for the forced oscillator, as predicted by the analytical solution, while
the oscillator for whom external force is zero rests at the default x = 0. In both cases, the numerical plots agree
with analytical solutions to within 1%.
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4. Conclusion

Damped Oscillator problem is an analytically solvable. Any disturbance can be interpreted as a non peri-
odic external force and the damped oscillator can be considered to be under forced oscillations of this external
force. While numerical solutions are easy to compute with the resources available today, having written down
analytical solutions gave can give us great insight into how the system will evolve over time and how the initial
conditions will affect its evolution.

I would like to thank Professor Dr Vandana Sharma (Dept. of Physics, IIT Hyderabad) for her intriguing
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