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We consider Top Quark Production at LHC in pp collisions. Being the heaviest and third gener-
ation quark, Top Quark lies at the frontier of the current understanding of the Particle Physics and
holds keys to the gates of Beyond Standard Model (BSM) Physics. Here we consider a novel way
to identify Top Quarks at the LHC, using Deep Learning to classify Top Pair Production Events
against QCD and other backgrounds.

I. INTRODUCTION

Many applications for Deep Learning Methods are cur-
rently employed by the CMS Collaboration at the LHC
to identify heavy flavour quarks [1]. At the actual detec-
tor, many tools such as Multi Variate Analysis and Neu-
ral Networks are deployed and many results are often
combined to reach a final conclusion about jet tagging
and quark flavours. However so far, no single method
has been employed to tag top flavoured jets. Many al-
gorithms have been suggested [2] and quite efficient al-
gorithmic results have been demonstrated in high energy
jets.

Since top quark is very heavy, they are mostly cre-
ated will decreasingly smaller momenta and consequently
boost. High energy tops (pT > 500GeV ) typically have
orders of magnitude smaller cross section than tops with
relatively small momenta (pT > 20GeV ). This loss of
cross section is a trade off while searching for highly
boosted and collimated top jets, which are easier to iden-
tify. However with a more systematic and data driven
approach to top jet identification although, it is possible
to tag top jets without significant loss of cross section, as
we demonstrate here.

II. METHOD

The outline of our new process is to first try to tag top
jets as correctly as possible in simulated events such as
Pythia[4]. This is not very complicated since in simula-
tions, we can directly access flavour information at the
parton level. Next we collect as many useful charaacter-
istics as we can about each and every jet and collect all
the data in a list of jets format. Every row of this file
(dataset) corresponds to 1 jet produced in the simulation
along with its flavour (source). We then contruct observ-
able variables for these jets and feed these observables
along with source information to a Deep Neural Network
(DNN). The DNN will identify all the features on its own.
After training, the DNN will be able to tell us whether
a given collection of observables is (most likely) a top jet
or not.
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Column Name Observable description
I Yes pT ordered index per Event
η Yes Pseudorapidity (round to 0.1)
φ Yes Azimuthal angle (round to 0.1)
pt Yes Transverse Momentum
mult Yes No. of particles in the jet
m Yes Invariant Mass
e Yes Relativistic Energy
sibl Yes No. of jets present in the event
q Yes Total Charge

Nch Yes No. of charged tracks

girth Yes
∑

i of J (pTi∆Ri,J )

pTJ

Xe Yes max(Ei for i in Jet)
EJ

sumR Yes
∑

i of J(∆Ri,J)

src No Jet Flavour

TABLE I. Various properties collected for each jet

To implement our method, we went and simulated
pp→ tt̄ events. We used Pythia 8.2.4 built with FastJet
3.3.3 [5] for this purpose. For every event, we selected all
particles that are stable, and visible in the detectors, but
are not leptons and fed them into fastjet for jet cluster-
ing. FastJet then gives us a list of jet clusters for each
event. In the next step we iterate through every jet and
collect information about it. Table 1 lists all the variables
collected for every jet.

The column src was calculated using a Mass Conctri-
bution Method (MCM). For each Jet, {HJ} is the set of
the hardest parent of each constituent. We back track
the parents of each i in {HJ} until we find a parton from
the hardest process. Since tops decay fully into b & W ,
for pp → tt̄ this means only three possibilities; we may
find a t quark directly, or a W boson, or neither. We say
srci = 2 for a particle in {HJ} if i comes from t quark
directly (no W boson found while searching). Similarly
srci = 1 for those coming from W and srci = 0 for
those coming form neither. Then we define source for a
jet as srcJ = k where i ∈ {HJ} and:

∑
srci=k

mi = max(
∑

srci=0

mi,
∑

srci=1

mi,
∑

srci=2

mi) (1)
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FIG. 1. ECM = 14 TeV, |ηjet| ≤ 2.5, pTjet > 20 GeV, R =
0.75 with FastJet 3.3.3, Anti-kt jet finding in Pythia 8.4.2

Process σ(fb) Signal
pp→ tt̄ 31.92 27281.7048

QCD Background 14110 271.6963577
pp→ ZZ, ZW, WW 1.92 0.7104
pp→ H, HW, HZ 30491 0.0
pp→ Hff̄, Htt̄ 0.000561 0.456654
pp→Wtt̄, Ztt̄ 0.0 0.0

pp→ ZZZ,WWW,WWZ,WZZ 0.0 0.0

TABLE II. Background estimations: pTmin ≥ 1000 GeV

III. RECONSTRUCTION OF THE TOP QUARK

Given any event, we have a few jets with each of whom
flavour has been associated. It is represented by one src
column, which is 2 for b jet derivatives, 1 for W deriva-
tives and 0 coming from neither. In order to be sure
of our flavour assciation, we plot the invariant mass of
jets. Instead of going into a complex process for compos-
ing these groups, we just do make simple combinations.
First we make all NC2 pairs of jets in every event and
plot their respective invariant mass. As expected, we see
a peak at around 80 GeV, the peak for W boson mass.
So we select two jets such that their invariant mass lies
in the mass window (65, 95) GeV. Then we pick a third
jet, whose sum of square of distances from the two jets is
minimum, and we plot the invariant mass of all the three
jets. This plot is shown in Figure 1. Given our simple
approach to reconstruct top mass, our liberal mass win-
dows of (145, 205) GeV are compensating. We could try
to make a very complicated method to catch much more
top jets, and in turn tighten our mass window, but that
is not our point. Our point is to be able to facilitate
event classficiation.

Using this technique, we are able to count 31.05%
events where at least one of the Top jets gave us the

correct invariant mass. The striking part about this ap-
proach is that if we use the src column of from our sim-
ulation and reject all the jets whose src value is zero
(background jets), we end up with the same number of
jets within 2%. The other important bit is that since we
have not used any pT cuts, we are able to make use of
the croos cross section space.

However so far we cannot use this technique on exper-
imental data. In order to do that we proceed to column
wise tabulate our simulation data. We then feed this data
including all the variables in Table 1 into a Deep Neural
Network (DNN) and use it’s learning to predict the src
column for each jet. Instead of using 3 values for src
we train our model to predict whether a given jet from
any event had a zero or non zero src column, which is
a binary classficiation problem, a well explored territory
in DNNs. Since the jets with a srcJ = 0 are background
jets, we discard them and try to contruct the invariant
mass of the top quark from the remaining jets.

The results are that the events for which at least
one reconstructed jets’ invariant mass lies in the range
(145, 205) GeV or tagging efficiency is 24.56%. The
mistagging efficiencies are very low, well below 0.1%.
This is a strong evidence that given any event which can
be simulated, the DNN can learn the jet features of the
simulation in order to assist us in potentially classifying
real experimental events.

IV. BACKGROUND ESTIMATION

In this section we consider the potential background
processes whihc may corrupt our data. Since the DNN
learns jet features from the pure simulated events, but in
real life will be tested on experimental data containing a
wide variety of processes, we do a background estimation
on the following processes in order to gauge the practi-
cal usability of our method. They were simulated with a
min pT cut on the hard process as pT > 1000GeV . For
comparison, the original top pair production is also in-
cluded. Signal is calculated = ( n

N )σL, where n is counted
events (at least 2 jets must have non zero src value to be
counted), N is total events and L is luminosity of choice
= 1000. It is also to be noted that 1.6× 107 QCD events
were simulated due to limited computation power. The
results are outlined in Table 2.

V. CONCLUSIONS

Neural Networks in High Energy Physics are not a new
phenomena, people have been exploring many different
ways to be able to leverage computational power in or-
der to magnify signal background ratios. However we
here propose a novel way to use today’s sophesticated
Monte Carlo simulators, and use Deep Networks trained
on simulation data in order to classify experimental data.
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As we can see, the Top Quark Pair Production event
gives a signal about two order of magnitude larger than
most backgrounds. These backgrounds which complicate
our life a great deal in experimental data, force us to
move to higher pT events, restricting our cross section.
However if we employ features from simulation data and
use them to classify events in experimental data, our
backgrounds could be reduced substantially without any
significant loss in the signal. At the data driven stage,
we correctly classify 85.45% of the Top Pair Produc-
tion events, while being able to reconstruct top mass in
31.05% of the events. However at the testing level, after
putting in a naive neural network, we correctly classify
68.54% of the tt̄ events, and reconstruct the invariant
mass of Top Quark in 24.56% events. The mistagging
from background events rises from 2 × 10−4% to about

3× 10−2%. A high varability in mistagging is observed,
with the Neural Network structure and efficiency making
a large difference in mistagging rates, athough all such
observed mistagging rates were well below 0.1%. The sig-
nificance is calculated as singal√

signal+background
which comes

out to be around 163. Such a high confidence tells use
that we might have a lot of space for exploring such new
techniques and presents a stong evidence for putting this
technique to test.

In this report, we looked at a very simply jet recom-
bination scheme along with the simplest flavour associa-
tion parameters one could think of, resulting in negligible
mistagging and roughly a quarter of the events classified
correctly without any cross section cuts. This is convinc-
ing at least as a proof of concept, while actual application
and analysis on real experimental data will be needed to
assess the future of such techniques.
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